The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector.
To get the most out of your plug-in electric vehicle (also known as an electric car or EV), you must charge it on a regular basis. Charging frequently maximizes the range of all-electric vehicles and the electric-only miles of plug-in hybrid electric vehicles. Drivers can charge at home, at work, or in public places. While most drivers do more than 80% of their charging at home and it is often the least expensive option, workplace and public charging can complement residential charging.
TYPES OF CHARGERS
Charging your EV requires plugging into a charger connected to the electric grid, also called electric vehicle supply equipment (EVSE). There are three major categories of chargers, based on the maximum amount of power the charger provides to the battery from the grid:
Charging times range from less than 30 minutes to 20 hours or more based on the type of EVSE, as well as the type of battery, how depleted it is, and its capacity. All-electric vehicles typically have more battery capacity than plug-in hybrid electric vehicles, so charging a fully depleted all-electric vehicle takes longer.
In addition to the three types above, wireless charging uses an electro-magnetic field to transfer electricity to an EV without a cord. The Department of Energy is supporting research to develop and improve wireless charging technology. Wireless chargers are currently available for use with certain vehicle models.
TYPES OF PLUGS
Most modern chargers and vehicles have a standard connector and receptacle, called the SAE J1772. Any vehicle with this plug receptacle can use any Level 1 or Level 2 EVSE. All major vehicle and charging system manufacturers support this standard, so your vehicle should be compatible with nearly all non-fast charging workplace and public chargers.
Fast charging currently does not have a consistent standard connector. SAE International, an engineering standards-setting organization, has passed a standard for fast charging that adds high-voltage DC power contact pins to the SAE J1772 connector currently used for Level 1 and Level 2. This connector enables use of the same receptacle for all levels of charging, and is available on certain models like the Chevrolet Spark EV. However, other EVs (the Nissan Leaf and Mitsubishi i-MiEV in particular) use a different type of fast-charge connector called CHAdeMO. Fortunately, an increasing number of fast chargers have outlets for both SAE and CHAdeMO fast charging. Lastly, Tesla’s Supercharger system can only be used by Tesla vehicles and is not compatible with vehicles from any other manufacturer. Tesla vehicles can use CHAdeMO connectors through a vehicle adapter.
Level 1 Charging

Level 1 Charging – Standard House Outlet
Level 1 charging is the technical jargon for plugging your car into an ordinary household outlet. For a Leaf, this means about 4.5 miles of range per hour of charging or about 22 hours for a full charge. Wow, does that sound terrible! But there’s a problem with thinking this way: you’ll rarely need to do a full charge from flat empty to full. If you drive 40 miles per day and charge overnight, you’ll be back to full in 9 hours. When you’re sleeping, it doesn’t matter if it takes one hour or 9 hours to charge.
But what if you have to drive a lot one day, say 80 miles? Sure, it would take 18 hours to get a full charge, but with a 9-hour overnight charge, you’ll be ready for your normal commute the next day. If you drive less than 40 miles per day or charge for more than 9 hours, you’ll work back up to a full charge over the next few days.
If you need to drive 80 miles on consecutive days, you’ll need an alternative. Maybe you’ll drive your other car, that gas-burner you keep around for long trips, or if there’s public EV charging in your area, you can charge away from home while you’re parked to do your shopping or other errands.
Level 1 charging at work could also be a supplement for people driving over 40 miles per day, or even a substitute for those who can’t charge at home (because they don’t have a garage or fixed parking place, for example).
Since it’s easy to get 40 miles of range charging overnight from 120V, Level 1 is perfectly suited for overnight charging of the Chevy Volt, a plug-in hybrid with a 40-mile all-electric range.
Although Level 1 charging is generally too slow for a road trip, it can be helpful as destination charging. Cathy and I drove 90 miles to San Juan Island, charged for a few days in a friend’s garage when not cruising around the island, and left with a full charge. That was great, but I wouldn’t want to have to wait for Level 1 charging in the middle of a travel segment.
Beyond range issues, Level 1 may not be suitable for primary charging in all cases. In extreme climates, more power may be required to maintain proper battery temperatures. In these cases, Level 2 charging may be more appropriate (see below).
DC Fast Charging
At the other end of the spectrum is DC Fast Charging, the fastest type of charging currently available. It provides up to 40 miles of range for every 10 minutes of charging. These stations are expensive (up to $100,000) and require more power than your house, so you’ll never have one of these in your garage.
They are going to start appearing as public charging stations in the next year, beginning in the Leaf target areas. If there’s one conveniently located near where you drive, you can get back up to 80% of a full charge while getting lunch or drinking a latte. Charging this fast makes it far more practical to drive beyond an EV’s single-charge range in one day. It’s still not going to make a one-day 800-mile drive practical, but a 200-mile drive with a couple of charging breaks can be quite doable.
Level 2 Charging
Between the cheap Level 1 and expensive DC Fast Charging stations sits Level 2 charging. Level 2 supplies 240V, like what an electric dryer or oven uses. It goes through a box and a cord that improves safety by waiting to send power to the plug until it’s plugged into an EV. Level 2 allows for a wide range of charging speeds, all the way up to 19.2 kilowatts (kW), or about 70 miles of range per hour of charging.
However, the charging stations being put in with federal grant money don’t support the full range of Level 2 charging and max out at 6.6 kW or around 26 miles of range per hour of charging.
Both Level 1 and Level 2 charging stations simply deliver household electricity to the car. Electronics on board the car transform the wall power into the proper form to charge the battery. This bit of electronics built into the car also has a maximum power rating. The first model-year Leafs can only use 3.3 kW, about 12 miles of range per hour, or about 8 hours for a full charge from empty. The Chevy Volt’s on-board charger is also limited to 3.3 kW, although its smaller battery pack gets full sooner.
Nissan recommends that you install a Level 2 charging station at home. That’s a reasonable thing to do if you don’t mind spending about $2,000, just consider it part of the cost of the car. Early buyers in the Leaf target markets may be able to get into The EV Project and get a free Level 2 charging station plus an allowance toward the install cost. Failing that, there’s a 30% federal tax credit (up to $1,000) for installing EV charging, which can make it less expensive. Still, if you are planning to use your EV for a daily commute of 40 miles or less per day, you should at least consider using Level 1 charging at home. You can always add a Level 2 charging station later if you decide you need it.
There will soon be 20,000 public Level 2 charging stations (limited to 6.6 kW) installed mainly in the Leaf target areas. Even if you only have Level 1 charging in your garage, if you’re in the early rollout areas, you should have access to convenient Level 2 charging available while your car is parked and you’re doing something else. These charging stations will make it possible to drive 60 miles to a baseball game and pick up about 50 miles of range in 4 hours while you’re having fun, thus easily driving over the single-charge range while always keeping a healthy reserve.
Charge Time and Battery Capacity
It’s misleading that charging times are generally quoted as time for a full charge. While it does take about 22 hours (Level 1) or 8 hours (Level 2) to charge a Leaf from empty to full, you’re not likely to do that often because you will rarely arrive home with a fully depleted battery. It doesn’t matter if you’re driving a 40-mile Volt, a 100-mile Leaf or a 240-mile Tesla Roadster, if your commute is 40 miles, you’ll only need about 9 hours (Level 1) or 3 hours (3.3 kW Level 2) to charge.
When we bought our Tesla Roadster, we got the high-power 16.8 kW Level 2 charging station, which can charge the car in 3.5 hours. After driving the car for a few months, I realized it’s all but pointless to have such a big charging station in our garage. It’s rare that I drive over 40 miles in a day. The 16.8 kW charging station can restore 40 miles in under 40 minutes. I want that charging speed when I’m making a long trip, not when I’m sleeping at home. In fact, I manually drop the power I pull from the charging station to about 7.5 kW because it’s a little nicer to our electrical panel and the grid, and my typical overnight charge is still under 2 hours. Ignoring the fact that Tesla is still using the now-incompatible proprietary charging plug they picked before there was a chosen standard, most people buying a Tesla Roadster today would be well-served to buy a 6.6 kW charging station for home.

3 Roadsters Sharing the Charging Station at Burgerville
Level 2 Charging, Road Trips, and Charging Speed
Already, Ford has announced that the upcoming electric Ford Focus will support charging at 6.6 kW, and is making fun of the Leaf’s 3.3 kW Level 2 charging limit. By the time Ford actually starts delivering the electric Focus, Nissan may have already upgraded the Leaf to 6.6 kW charging. I don’t think it will be long before mainstream EVs are capable of even faster charging. The Tesla Roadster can charge at 16.8 kW, which combined with a larger battery pack makes 400-mile drives possible even without DC Fast Charging. Given that Level 2 charging costs 1/10 of what a DC Fast Charger does, I can imagine a lot of driving being supported by full Level 2 charging stations in areas that can’t justify the investment in DC Fast Charging.
Personally, I’m disappointed we’re spending so much money installing these 6.6 kW public charging stations rather than full-speed Level 2 chargers when most of the expense is usually just running the wires and buying the fancy box. A typical commercial Level 2 install runs around $10,000 for a charging station that’s connected to a network and capable of billing the user. Cranking those charging stations up to the 19.2 kW limit would add a small incremental cost, perhaps 10% to 20%, and would allow for much faster charging. If you’re a business owner installing a charging station and have to dig a trench and/or run conduit, even if it’s just a for 6.6 kW unit, I strongly recommend planning for running 100A wire later without having to retrench or replace conduit so that upgrading to a 19.2 kW charging station will be much less expensive.
No comments:
Post a Comment